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NOTATION

Cross~-sectional area of reinforcement

a Coefficients of mapping function
aﬁ Coefficients of complex function ¢(z)
bn Coefficients of complex function ¢(z)
C Constant
! cn’dn Coefficients of P function
D Related to difference of principal stresses
ds Element of arc length
1 F(o) Function related to radius of curvature
' i £
m,n Running indices
P Axial force in reinforcement
P,q Principal stresses at infinity
R Size of opening
R* Normal force
r Radial coordinate (polar)
S Related to sum of principal stresses
) Tangential force
é t Thickness of plate
U Airy stress function
; X5y Cartesian coordinates
{ z Complex number, x + iy
| a,8 Curvilinear coordinates
; 9 Polar angle
é 9,99 Ta Curvilinear stresses
‘ o( ) w( ) Complex functions of argument
9 Boundary value of ¢ at e® = p = 1
" eaﬂ' B

v Poisson's ratio
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ABSTRACT

A fundamental problem in plane elasticity is studied:
to determine for a given opening the amount and distribution
of reinforcing material required to satisfy certain specified
stress field criteria. The relationship between the local
stress field around the opening and the reinforcement distri-
bution is presented explicitly such that either one of them
can assume the role of an independent parameter. The problem
is set up as Muskhelishvili's first boundary value problem in
which a function is derived to represent the loads due to

reinforcement. A solution is worked out for a general mapping
function which can describe almost any opening of practical
interest. Numerical results and other implications for a
reinforced circular opening are discussed in greater detail.

INTRODUCTION

The use of reinforcements at the boundaries of openings of various
shapes is common practice in ship and aircraft construction. Beginning
with the Kirsch solution of a circular opening in an infinite plate under
uniform tension, there are in the literature a great many papers which
deal with the boundary value problem of the reinforcement of openings in
plates. With a few notable exceptions [1,2] most researchers formulate
these investigations as a stress/strain boundary value problem, i.e., the
stresses and/or strains are specified (constrained) at infinity as well as
at hole boundaries and the resulting stress field is then computed. The
approach is therefore one of trial-and-error in which several designs of
reinforced openings must be studied before acceptable stress levels are
found.

Mansfield [1] attempted the inverse approach of specifying the
complete stress field in the plate and then seeking a compatible opening
with variable reinforcement. His stress criteria required the original




stress field to be unperturbed by the presence of reinforced holes.
Mansfield, therefore, used the phrase “neutral holes". The results he
produced were rather limited in application, as some of the reinforcements
required to render the holes neutral were not very practicable. Recently,
Bjorkman and Richards [2] studied the inverse plane elasticity problem of
an infinite plate containing a hole wnich leaves the first stress
invariant (ox + oy) of the original stress field unchanged. They called
such holes "harmonic holes"; the phrase is justified in that 9y +oy is a
harmonic function which remains unaffected by the presence of such a hole.
They have used the usual Muskhelishvili formalism and have further shown
that an ellipse is a possible shape for a harmonic hole where the ratio of
major to minor axes bears a direct relationship to the ratio of the normal
stresses at infinity in two directions. While the treatment of the problem
by Bjorkman and Richards [2] is quite elegant, the actual application is
again somewhat limited due to the shape (elliptical) and unreinforced
nature of the holes.

The approach followed in the present paper builds partly upon an
earlier paper by the author [3] and partly upon the “harmonic hole"
condition. The problem can thus be formulated: determine the distribution
of reinforcement around a specified opening in an infinite plate under bi-
axial loading such that the sum of the principal stresses (or the first
invariant of the stress tensor) remains unchanged.

BOUNDARY CONDITIONS

Figure 1 shows an opening of general shape which is reinforced with a
variable amount of reinforcement. The forces acting on a boundary element,
ds, of the reinforcement are shown in Figures 2a and 2b. If this boundary
is to be in elastic equilibrium, the following equations must hold true
(in curvilinear coordinates, Figure 2a):

%z—ds+Tds=0, R*ds - Pde= 0,
(1A)

R¥ =0 t, [ i S
o aB
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Figure 1 - A Reinforced Hole in a Plate
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Figure 2 - Forces on an Element of Reinforcement




and (in Cartesian coordinates, Figure 2b):

d(P sin y) = t(oydx - rxydy)

(18)

d(P cos y) = t(xxydx - oxdy)

These equations assume that the reinforcing member does not resist
bending and is distributed thinly along the hole boundary. If the Airy
stress function, U, is introduced in Equations (1B), total integration
and summation of the two equations gives

U, U, 4P v
ax*‘ay ite

+cC (2)
where ¢ is an arbitrary complex constant. Let
z = z2(z) (3)

be a mapping function which transforms the actual opening in the z-plane
to a unit circular opening in the z-plane. Equation (3) can be used to
obtain

e\lp s {a Z Lo (4)

where o is the boundary value of ¢ at the opening. Equations (4) and (2)

can be combined to give
au ,.3u_ P / z' (o)
X +13y & L l(oj i (5)

where, due to equivalence of tangential strain at the opening boundary and
in the reinforcement,

N

. % ts

o

- voa) (5A)

The boundary condition at the hole boundary can thus be written as

¢(o)+:—(_,% $7(0) + ¥() = o b %'-(—T:_)_L*rc (6)

where ¢(o) and y(o) are boundary values of the functions ¢(z) and y(z) at
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the opening. These two complex functions define the entire stress field

by
00*08-2[%‘—&%+_§_‘-§L]
and <5 (7)
g - o, *+ 21 . pr— [z(c) ¢'(c) +¢'(2)]
where

¢(zg) = %{‘8’

In order that Equations (7) also predict the stresses at infinity,
the complex functions ¢(¢) and y(z) assume the following forms

#(z) = S z(g) + oo(;)
} (8)

w(r) =D z(zg) + vo(2)

where S and D are constants and the functions ¢0(c) and wo(c) approach

zero at large values of . Thus

le) = T 2
0 al ¢
b (9)

The constants S and D can easily be computed, using Equations (7), to be

S:Q—Z_ﬂ
(10)
D=_L£J_e~2'ie

where p and q are the stresses at infinity and o is the angle between the
x-axis and p. The form of ¢(z) and v(z) can, thus, be effectively used to
automatically satisfy the boundary condition at infinity and Equation (6)
would then be the only remaining condition to be satisfied for obtaining a
solution to the problem. It should be noted that Equation (6) is
considerably simpler than a comparable equation developed earlier by the




author [3] for solving the direct problems of elasticity involving
reinforced hole boundaries.

METHOD OF SOLUTION

Once the boundary condition as given by Equation (6) is developed,
its solution is merely routine and may or may not be complicated depending
on the complexity of the mapping function. In this case, however, this
equation is further simplified by specifying a field condition which

requires
u b oy 2|88 e L] 54 g an

Equation (11) reduces to ¢4(zc) = 0,* as shown by Bjorkman and
Richards [2]. Thus Equation (6) becomes

P z'(a)
2Sz(o)+ Dz(o)+ v =0 = O +cC (12)
( (o) oios t V3

If the opening is assumed to be a smooth closed curve, it is possible

to represent
P - n dn
fJZ'(c) Z2'(c) = & (Cno +T) (13)
=0

Since %‘}Z'(c) z'(0) is a real quantity, c, and d have to be accordingly

adjusted. Eauations (12) and (13) can be combined to obtain

2S z(0) 27 (o) + D z(0) z'(0) + volo) 2'(0) =

(c "

d
o (6n L —E:T) +c¢ 2'(o (14)
g

o™~ 8

n

which is now the boundary condition at the reinforced opening of any
general shape. It is easy to show that, with Muskhelishvili's technique,

* Care must be taken since Bjorkman and Richards [2] use different notation.




Equation (14) can conveniently be solved for a general mapping function of
the type

® am
2(c) =R(z + z —0) (15)
m=1
which can represent almost any opening of practical interest. However,
to focus attention on a particular opening and to study the related
implications, the problem of a circular opening will now be discussed in
greater detail.

CIRCULAR OPENING

Let a plane plate under biaxial uniform tensions p and q in the x-
and y-directions, respectively (see Equations (10)), contain a circular
opening of radius R. The mapping function

7. h _ i6
z2=2(¢c) =Rg; z=re (16)
which describes a circular geometry, can be substituted in the boundary
condition (Equation (14)) to obtain

d
2 © — @
25R2o+ 8-+ R oM = 3 (o™ + D) + R (17)
¥ =0 n=0 o
Now Equation (17) and its conjugate can be multiplied by ?%7'§¥%
and integrated around the unit circle to obtain
= . > = =
Ch dn, nZo0 b0 c=0
2c, = b,R + 2S R? b, = 0
¢y = 0 b3 = DR
= DR2 - i
¢y DR bn 0; nz24

¢c. =0; nz3

which define the solution to the problem. The functions ¢(z), w(z), and

% can now be given by




Lo caacs

—r—

¢(c) = SR¢ &
b

Ly

Wielh e ok =+ e , (19)
P oo b, + 25R + DR(02 + %)

% =

)
Equations (5A), (7), and (19) can be combined to obtain

b \
% i LSS
o, 28 + = (D r“) cos 26
e (-3 cos 20 ¢ (20)
% Rr2 e
Sre [ O
Too (D + r“) sin 26 J

and, since at the hole boundary r is unity,

b
s (p+q) +2 —Rl - 2(p-q)cos 26 015
Rt b
(1-9)(p*a) =2(1+v) g + 2(1+v) (p-q)cos 26

Equations (20) and (21) clearly show a.coupling through the term
b
T%' Actually, the presence of this term implies that several pairs of
reinforcements and stress distributions are possible for a reinforced
circular opening which do not alter the sum of principal stresses in the
rest of the infinite plate under uniform biaxial tension at infinity. The
b

possible values of p, q, and 1%-, which do not permit the actual rein-

forcement distribution A/Rt to become negative, are given by the following

inequalities: :

b b
o SR vl O g |
SR RZ "I IR
? (22)
v, v p 13y, D
1+3v 143v qR ~ q 3+v 3+v QR )

These equations, if plotted on graph paper, will delimit an area which
will define several permissible pairs of values for p/q and by/qR. It is
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obvious that, for p=q, Equation (21) reduces to the Mansfield solution [1].
At this point it should be noted that right from the beginning the problem
did not call for a unique solution. The constraint of unaltered sum of
principal stresses does not characterize the stress field as unique. As a
result a number of possible solutions exist which satisfy the prescribed
conditions. Any additional condition, such as regarding the stresses at
any particular location, will immediately make the solution unique. The
general procedure, as described, allows for some trade-off studies

between the reinforcement distributions and the stresses. Of course, as
pointed out by Bjorkman and Richards [2], other field conditions can also
be prescribed as the beginning point.

To get an actual feeling for the solution, let
b
B-1.5and ) =-0.5
q .5 an aﬁ
Then

et S
Rt (7-3v)

2 cos 26
+ 2(1+v)cos 26

which has a maximum value of T%;—at 8 =n/2 and a minimum value of o

9-v
at 6=0. This distribution obviously requires considerably less
reinforcing material than the Mansfield case of all-around tension with

p/q = 1 and a uniform A/Rt = 1/1-v.

ADDITIONAL EXAMPLES

Circular geometries are a special case in many physical problems and
their solution is relatively simple. Therefore, it appears worthwhile to
investigate some noncircular openings. Let an infinite plate under uni- t
i form biaxial tensions p and q along x- and y-axis, respectively, contain
a reinforced opening given by

a a a
L o (23)

oy

It is well-documented that a function such as Equation (23) can map
a circular, elliptical, square, or rectangular opening in the z-plane onto




a unit circle in the z-plane depending on the values of constants a5, 33,
and 3. Furthermore, if the orientation of the opening is symmetric with
respect to the axes, then the constants a1s A3, and ag are real. Now with

Equation (23)

as the mapping function, the boundary condition (14) after

usual processing yields
G dn; nzo0 W
2cy = Rby + ZSRZ(l-a%-Bag-Sag)
Cy = ZSRZ(a‘-a‘a3-3a3a5) + DR2 >
¢p = ZSRZ(a3-a]a5)
Cg = 2$R2a5
¢, =0 n2 7 )

(24)

The function v(z) can be determined by integrating the conjugate of
In fact, the coefficients are found to be:

Equation (14).

by =

n

by3 =

bon+1

0;
]
5
a\
%
=

%

= a,b +3a,b +5a.b

n2

0
C
2
LRl 3

. + 25R(a1+3a

2
]a3+5a3a5) + DR(a]+2a
c
4
b3+3a3b]+—§-+ZSR(3a3+Sa]a5)+4DR(a]a3+a5)
c
6 2
b5+3a3b3+5a5b1+-§—+105Ra5+3DR(2a]a5+a3)

b7 + 3a3b5 + 5a5b3 + BDRa3a5

2
bg + 3a3b7 + 5a5b5 ' SDRa5

by + 3a,b, + 5a.b

11 379 57

1P2p-1 * 3230y, _3*+5agby, g3 n 27

3)

> (25)

Now Equations (1A) and (5A) and the field condition can be combined
to obtain a useful relation that will bypass the use of y(z); i.e., for

computing A/t:

10
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]

- (1) ¢

[ |\

(26)

aleqo

LR
t S
B

4s

[=%

where

(Z';')3/2
"3 'y O =8
22 #* %5 1 2 z'Z

ds _
ds

is the radius of curvature of the opening boundary. The problem is thus
solved. In fact, a direct substitution of the required quantities in
Equation (26) leads to

AL Plo)(2'7")3/2 (26A)
b 4s(2'7')2- (1+v)P(0)F(a)
where
G et
g nfo “on'° ;iﬁ)
and

F(O) = Z';' + _2ng|;|| + ;lzu

rja

The mapping function z is given by Equation (23) and the constants Ch
by Equation (24). The situation is again similar to that of the circular
case. A/t is known within a constant b] which couples it with the stress
field. Again a number of stress fields can be paired with appropriate
reinforcements which will keep the sum of principal stresses unaltered
over the entire field.

Using Equation (23) for a mapping function and assuming no rein-
forcement, the problem can be reduced to that of reference [2], which is
to be expected. In contrast to reference [2], which determines the
harmonic opening shape to suit an existing stress field, this paper
proposes a method for reinforcing an opening of any desired shape in such
a way that the reinforced opening behaves as a "harmonic hole."

11
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